A data-driven process for estimating nonlinear material models

نویسندگان

  • X. Y. Kou
  • S. T. Tan
  • Hod Lipson
چکیده

Driven by the wide range of new material properties offered by multi-material 3D printing, there is emerging need to create predictive material models for these materials. A data driven process for estimating nonlinear material model is presented in this paper. In contrast with classical methods which derive the engineering stress-strain relationship assuming constant cross-section area and fixed length of a specimen, the proposed approach takes full advantage of 3D geometry of the specimen to estimate the material models. Give a hypothetical material model, virtual tensile tests are performed using Finite Element Analysis (FEA) method, and the parameters of the material model are estimated by minimizing the discrepancies of the virtual responses and the experimental results. The detailed material models, numerical algorithms as well as the optimization approaches are presented and finally preliminary results are offered. Introduction Driven by the wide range of new material properties offered by multi-material 3D printing, there is emerging need to create predictive material models for these materials. Tensile tests are one of the most widely used mechanical tests to derive such material properties as Young’s modulus and yield stress. The output of the tensile test is a force-elongation curve, which is usually converted to the stress-strain curve for estimation of material properties. In such a conversion, it is usually assumed that the cross-section area and the length of the specimen are constant in the entire tensile test. The derived stress/strain is referred to as engineering stress/strain. Because of its simplicity and satisfactory accuracy in modeling metallic materials, it has been widely used in the past. For metallic materials, such engineering stress-strain based parameter estimation proves to be effective, since metals are significantly stiff and the change in the cross-section of the specimen is usually negligible. For polymer materials, such simplifications may introduce significant errors in the estimated parameters. In lieu of such classical approaches, there have been many targeted approaches that tries to get the true stress-strain from tensile tests. Arriaga et al [1] proposed empirical formulae to convert engineering stress-strain to true Cauchy stress. Grytten et al [2] used Digital Image Correlation (DIC) to measure local strain values in the tensile test of ductile thermoplastic materials. In this paper, a different data-driven approach is proposed to estimate the material models. We propose different hypothetical material models, and for each material model, the parameters are estimated by minimizing an objective function which relates the model parameters to the discrepancies of the virtual and experimental tensile test data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison and evaluation of the performance of data-driven models for estimating suspended sediment downstream of Doroodzan Dam

Dams control most of the sediment entering the reservoir by creating static environments. However, sediment leaving the dam depends on various factors such as dam management method, inlet sediment, water height in the reservoir, the shape of the reservoir, and discharge flow. In this research, the amount of suspended sediment of Doroodzan Dam based on a statistical period of 25 years has been i...

متن کامل

Efficiency of Neural Networks for Estimating the Patch Load Resistance of Plate Girders with a Focus on Uncertainties in Material and Geometrical Properties

In this paper, a sensitivity analysis of artificial neural networks (NNs) is presented and employed for estimating the patch load resistance of plate girders subjected to patch loading. To evaluate the accuracy of the proposed NN model, the results are compared with the previously proposed empirical models, so that we can estimate the resistance of plate girders subjected to patch loading. The ...

متن کامل

An Overview of Nonlinear Spectral Unmixing Methods in the Processing of Hyperspectral Data

The hyperspectral imagery provides images in hundreds of spectral bands within different wavelength regions. This technology has increasingly applied in different fields of earth sciences, such as minerals exploration, environmental monitoring, agriculture, urban science, and planetary remote sensing. However, despite the ability of these data to detect surface features, the measured spectrum i...

متن کامل

A Model-Driven Decision Support System for Software Cost Estimation (Case Study: Projects in NASA60 Dataset)

Estimating the costs of software development is one of the most important activities in software project management. Inaccuracies in such estimates may cause irreparable loss. A low estimate of the cost of projects will result in failure on delivery on time and indicates the inefficiency of the software development team. On the other hand, high estimates of resources and costs for a project wil...

متن کامل

Estimating Stock Price in Energy Market Including Oil, Gas, and Coal: The Comparison of Linear and Non-Linear Two-State Markov Regime Switching Models

A common method to study the dynamic behavior of macroeconomic variables is using linear time series models; however, they are unable to explain nonlinear behavior of the series. Given the dependency between stock market and derivatives, the behavior of the underlying asset price can be modeled using Markov switching process properties and the economic regime significance. In this paper, a two-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011